当前位置:首页 >> 解密信息 >> 技术文档

用C51芯片实现多任务机制与应用

时间:2011-05-26 08:50:52

 传统的单片机程序一般采用单任务机制,单任务系统具有简单直观、易于控制的优点。然而由于程序只能按顺序依次执行,缺乏灵活性,只能使用中断函数实时地处理一些较短的任务,在较复杂的应用中使用极为不便。嵌入式多任务操作系统的出现解决了这个问题。在多任务系统中,可以同时执行多个并行任务,任务之间可以相互跳转。但是嵌入式操作系统在提供强大功能的同时,也带来了代码量大、结构复杂、对硬件要求较高、开发难度大且成本高等问题。而很多时候只需要实现简单的多任务操作就可以满足实际需要,本文设计的这种简单的多任务机制,在只增加极少量C语言代码的前提下,不需使用汇编,无需对原本的程序进行大改动,就可以实现多任务操作。

     实时操作系统RTOS的核心是中断,利用中断进行任务切换。在大部分RTOS如μC/OS-II中,每个任务都有自己的堆栈,用来保存任务的一些信息,任务之间通过信号量、邮箱、消息队列等传递信息。在很多情况下并不需要这些功能,只需要使单片机在接收到控制信号后,切换到不同的工作状态,也就是只要进行任务切换,不需要保存任务的相关信息。舍弃这些复杂的功能可以使程序结构变得简洁易用。

两种机制在应用实例中的比较
    下面用一个应用实例来说明本设计的思路。要设计一个智能安防系统,它的功能包括:当有人入侵时执行报警工作;用户可以通过键盘板进行功能设置;主板能与管理中心进行通讯,当发生火灾、地震等灾情时,管理中心能通知用户。其结构如图1所示。平时状态下,主板的CPU不断地扫描各个传感器的状态。当检测到传感器的异常信号(有人闯入)时,CPU进入入侵报警状态,执行响警铃、拨打户主电话、通知管理中心等工作。当发生火灾地震时,管理中心发送一个串口代码给主板CPU,使CPU进入灾难报警状态,执行响警铃、语音报警等操作。用户需要进行功能设置时可以通过键盘板使主板CPU进入功能设置状态。因此主板的CPU有4种不同的工作状态。


 
图1  智能安防系统结构示意图

    如果采用单任务机制, 主板的程序流程如图2所示。在主函数中循环检测传感器状态,如有异常则调用报警函数,灾难报警和功能设置在串口中断中完成。这种单任务结构有两个缺点。首先,在各种非平时状态中,程序需要不停地检测是否收到撤除信号,这个要求在程序代码量大、执行工作较多的情况下很难实现。其次,各状态之间的切换十分困难,用C语言写的程序为求模块化,一般函数数量较多,函数调用的嵌套层数也多,要从一个较深的嵌套立刻跳出到主函数,是非常困难的。一般的解决方法或是使用C51的库函数setjmp()和longjmp()实现长跳转,但是这两个函数在中断函数内部是无能为力的;再或是在C函数中嵌入汇编指令。虽然用汇编指令可以实现程序的长距离跳转,但是这种方法的调试过程十分烦琐,而且程序的可移植性差。对于习惯用C51编程而不想用汇编的设计者,该部分程序是一个难题。


 图2  单任务机制程序流程

实现多任务机制的程序结构
    本文提供了一种方法,可以在完全不使用汇编指令的前提下实现可移植性强的多任务程序,程序流程如图3所示。
 

图3  多任务结构程序流程

实现这个多任务机制的完整源代码如下:
word idata PC_Value, SP_Value;     file://储存中断返回点、SP初值的全局变量
byte idata Ctrl_Code;               file://控制任务切换的全局变量,在中断函数里被赋值
void main()
{
Initial();          file://初始化函数,与程序结构无关
SP_Value=SP;        file://获取SP的初始值
PC_Value=Get_Next_PC();             file://获取下一条指令的地址
EA=1;          file://获取PC、SP初值后再开中断保证稳定性
if(Ctrl_Code!=0)
SP=SP_Value;         file://重置堆栈指针,防止堆栈溢出
switch( Ctrl_Code)        file://任务入口地址,即中断的返回点
{
case 1:   goto  TASK1;
case 2:   goto  TASK2;
case 3:   goto  TASK3;
default:  break;
}
TASK1:  for( ; ; )
{          file://任务1代码        }
TASK2:  for( ; ; )
{          file://任务2代码        }
TASK3:  for( ; ; )
{          file://任务2代码        }
}
word Get_Next_PC(void)     file://获取下一条指令的地址
{
word address;
address=*((unsigned char *)SP);    file://PC的高字节
address <<= 8;
address+=*((unsigned char *)(SP-1));  file://PC的低字节
return address+4;       file://查看反汇编代码,计算所得
}
void Chuan_Kou_Interrupt(void) interrupt 4 using 0
{
byte a1,a2;
a1=a1*a2;
*((unsigned char *)(SP-5))=PC_Value>>8;
*((unsigned char *)(SP-6))=PC_Value & 0x00ff;
{
file://接收串口代码并根据代码修改Ctrl_Code的值
file://其他操作 }
 }

任务调度原理与实现
    程序的整体思路是在主函数main中依次放置几个死循环作为任务框架,即每个任务都是一个死循环,利用中断进行任务切换。以刚才所说的安防系统为例,由于主板、键盘、管理中心之间是通过串口通讯的,因此串口是用来触发任务切换的理想中断源。程序为所有任务设置一个总入口并放在主函数中,串口中断每次返回时必须先经过这个总入口,在总入口处检查任务控制变量(全局变量)的值,任务控制变量已在串口中断中被赋值,其值决定要切换到哪个任务。

  设计中可以把平时状态、入侵报警状态、危机报警状态、功能设置状态分别作为任务1、任务2、任务3、任务4。主板CPU平常工作在平时状态,即任务1;当串口收到管理中心的危机代码,在串口中断函数中令Ctrl_Code = 3,中断返回后会切换到任务3;同样,接收到键盘的功能设置代码后,会切换到任务4;由于入侵检测是由主板CPU自己负责,因此如果检测到有人入侵需要切换到入侵报警状态时,可以借由键盘中转产生串口中断,即向键盘发送一串口数据并要求键盘回送。这样就实现了各个状态的切换。

  实现任务调度需要解决3个关键问题:

  ① 获取任务入口点的程序地址。由于使用C语言不能直接获取和修改程序计数器PC的值,而在调用函数时会将PC值入栈,利用这个特点在任务入口处之前调用Get_Next_PC函数即可从堆栈中获得入口地址。Get_Next_PC中,SP为堆栈指针,得到的PC值要加4才是任务入口地址,因为查看反汇编窗口可知,将函数返回值传给全局变量PC_Value需要两条2字节长的mov指令。

    ② 修改中断返回地址。修改中断返回地址的操作与获取PC值类似,都是通过修改堆栈中的内容实现。但是由于编译器自身的特点,在进入中断时,编译器除了把返回地址入栈外,还会计算自身及它所调用的函数对寄存器ACC、 B、 DPH、 DPL、 PSW、 R0 ~ R7的改变,并将它认为被改变了的寄存器也入栈保护。如果堆栈结构会随中断函数内容改变而变化,就没办法计算中断返回地址堆栈中的位置。解决方法是,在中断函数定义时加上关键字using 0 告诉编译器中断函数及其调用的函数将使用寄存器组0,这样工作寄存器R0~R7将不会被保存。ACC、PSW、DPH、DPL在对PC_Value操作时已经用到,在中断函数开头定义两个变量a1、b1并令它们相乘,使B寄存器也被入栈,这样堆栈的结构就是固定的了。

   ③防止堆栈溢出。由于在调用函数时编译器会将当前地址入栈,返回时再出栈,当任务切换即中断多次发生在函数调用过程中时,堆栈会因为只入不出而最终导致溢出。这是不能容许的。因此,应在主函数开头初始化后立刻将SP值保存,再在每次任务切换后都将SP恢复为初值,这可以有效防止堆栈溢出。

解密技术
解密问题
芯片解密